On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor

Mol Pharmacol. 1998 Jun;53(6):1120-30.

Abstract

We investigated the molecular nature of the interaction between the functionally selective M1 muscarinic acetylcholine receptor (mAChR) agonist xanomeline and the human M1 mAChR expressed in Chinese hamster ovary (CHO) cells. In contrast to the non-subtype-selective agonist carbachol, xanomeline demonstrated M1 mAChR binding that was resistant to extensive washout, resulting in a significant reduction in apparent N-[3H]methylscopolamine saturation binding affinity in intact cells. Functional assays, using both M1 mAChR-mediated phosphoinositide hydrolysis and activation of neuronal nitric oxide synthase, confirmed that this persistent binding resulted in elevated basal levels of system activity. Furthermore, this phenomenon could be reversed by the addition of the antagonist atropine. However, pharmacological analysis of the inhibition by atropine of xanomeline-mediated functional responses indicated a possible element of noncompetitive behavior that was not evident in several kinetic and equilibrium binding experimental paradigms. Taken together, our findings indicate for the first time a novel mode of interaction between an mAChR agonist and the M1 mAChR, which may involve unusually avid binding of xanomeline to the receptor. This yields a fraction of added agonist that is retained at the level of the receptor compartment to persistently bind to and activate the receptor subsequent to washout. The results of the current study suggest that elucidation of the mechanism or mechanisms of interaction of xanomeline with the M1 mAChR is particularly important in relation to the potential therapeutic use of this agent in the treatment of Alzheimer's disease.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Atropine / pharmacology
  • CHO Cells
  • Carbachol / pharmacology
  • Cricetinae
  • Dose-Response Relationship, Drug
  • Humans
  • Muscarinic Agonists / metabolism*
  • N-Methylscopolamine / metabolism
  • Nitric Oxide Synthase / metabolism
  • Phosphatidylinositols / metabolism
  • Pyridines / metabolism*
  • Receptor, Muscarinic M1
  • Receptors, Muscarinic / metabolism*
  • Thiadiazoles / metabolism*
  • Time Factors

Substances

  • Muscarinic Agonists
  • Phosphatidylinositols
  • Pyridines
  • Receptor, Muscarinic M1
  • Receptors, Muscarinic
  • Thiadiazoles
  • Atropine
  • Carbachol
  • xanomeline
  • Nitric Oxide Synthase
  • N-Methylscopolamine