Format

Send to

Choose Destination
See comment in PubMed Commons below
J Drug Target. 1998;5(3):149-62.

Structural requirements for cationic lipid mediated phosphorothioate oligonucleotides delivery to cells in culture.

Author information

1
ISIS Pharmaceuticals, Carlsbad, CA 92008, USA.

Abstract

A series of 2,3-dialkyloxypropyl quaternary ammonium lipids containing hydroxyalkyl chains on the quaternary amine were synthesized, formulated with dioleoylphosphatidylethanolamine (DOPE) and assayed for their ability to enhance the activity of an intercellular adhesion molecule 1 (ICAM-1) antisense oligonucleotide, ISIS 1570. Cationic liposomes prepared with hydroxyethyl, hydroxypropyl and hydroxybutyl substituted cationic lipid all enhanced the activity of the ICAM-1 antisense oligonucleotide. Cationic lipids containing hydroxypentyl quaternary amines only marginally enhanced the activity of ISIS 1570. Hydroxyethyl cationic lipids synthesized with dimyristyl (Cl4:0) and dioleyl (C18:1) alkyl chains were equally effective. Activity of cationic lipids containing saturated alkyl groups decreased as the chain length increased, i.e. the dimyristyl (C14:0) was more effective than dipalmityl (C16:0) lipid, which was more effective than distearyl (C18:0). The phase transition temperature of cationic lipids containing saturated aliphatic chains was 56 degrees C for the distearyl lipid, 42 degrees C for the dipalmityl lipid and 24 degrees C for the dimyristyl lipid. Cationic lipids with dioleyl alkyl chains required DOPE for activity, with optimal activity occurring at 50 mole%. In contrast, a dimyristyl containing cationic lipid did not require DOPE to enhance the activity of ISIS 1570. Formulation with different phosphatidylethanolamine derivatives, revealed that optimal activity was obtained with DOPE. These studies demonstrate that several cationic lipid species enhance the activity of phosphorothioate antisense oligonucleotides and provide further information on the mechanism by which cationic lipids enhance the activity of phosphorothioate oligodeoxynucleotides.

PMID:
9606005
DOI:
10.3109/10611869808995870
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center