Send to

Choose Destination
Microsc Res Tech. 1998 May 1;41(3):263-9.

Afferent regulation of glycine receptor distribution in the gerbil LSO.

Author information

Center for Neural Science, New York University, New York 10003, USA.


Synaptic activity plays an important role in many aspects ofneuronal development, particularly the expression of proteins. In this study, the influence of inhibitory and excitatory afferents on the development of glycine receptor density in the lateral superior olive (LSO) of Mongolian gerbils was investigated. Afferent activity was manipulated by removing one or both cochleas at postnatal day 7, prior to the onset of sound-evoked responses. Due to the anatomy of the LSO, these manipulations result in either excitatory denervation, inhibitory denervation, or both. The density of glycine receptors in the LSO was determined at 21 days postnatal. Glycine receptors were either labeled with tritiated strychnine (3H-SN) or with an antibody directed against gephyrin, a protein closely associated with the receptor complex. Antibody binding was used to quantify the differential glycine receptor density between the medial limb (high frequency area) and the lateral limb (low frequency area) of the LSO. 3H-SN was used to quantify the amount of glycine receptors in each part of the LSO in control and experimental animals. In addition, changes in neuron density and neuron cross-sectional area were quantified following cochlear ablations. In control animals, the amount of glycine receptors is about 2- to 3-fold higher in the high-frequency than in the low-frequency region. In bilaterally ablated animals, the same density of glycine receptors was measured in the high- and low-frequency region. Unilateral ablations had no significant effect on glycine receptor distribution, either ipsi- or contralateral to the ablation. The neuron cross-sectional area decreased about 30% in the ipsilateral LSO of unilaterally ablated animals and in bilaterally ablated animals. However, alterations of soma density and cross-sectional area were similar in the high- and low-frequency projection region. These results suggest that the distribution of glycine receptors is only changed when excitatory and inhibitory afferents have been denervated.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center