Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biochem. 1998 Jun;123(6):1000-9.

Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases.

Author information

  • 1Centre de Recherches sur les Macromolécules Végétales,Vrije Universiteit, Amsterdam, The Netherlands. breton@cermav.cnrs.fr

Abstract

Galactosyltransferases are enzymes which transfer galactose from UDP-Gal to various acceptors with either retention of the anomeric configuration to form alpha1,2-, alpha1,3-, alpha1,4-, and alpha1, 6-linkages, or inversion of the anomeric configuration to form beta1, 3-, beta1,4-, and beta1-ceramide linkages. During the last few years, several (c)DNA sequences coding for galactosyltransferases became available. We have retrieved these sequences and conducted sequence similarity studies. On the basis of both the nature of the reaction catalyzed and the protein sequence identity, these enzymes can be classified into twelve groups. Using a sensitive graphics method for protein comparison, conserved structural features were found in some of the galactosyltransferase groups, and other classes of glycosyltransferases, resulting in the definition of five families. The lengths and locations of the conserved regions as well as the invariant residues are described for each family. In addition, the DxD motif that may be important for substrate recognition and/or catalysis is demonstrated to occur in all families but one.

PMID:
9603985
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center