Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1998 May 26;95(11):5865-71.

Highly specific protein sequence motifs for genome analysis.

Author information

  • 1Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA.


We present a method for discovering conserved sequence motifs from families of aligned protein sequences. The method has been implemented as a computer program called EMOTIF (http://motif. Given an aligned set of protein sequences, EMOTIF generates a set of motifs with a wide range of specificities and sensitivities. EMOTIF also can generate motifs that describe possible subfamilies of a protein superfamily. A disjunction of such motifs often can represent the entire superfamily with high specificity and sensitivity. We have used EMOTIF to generate sets of motifs from all 7,000 protein alignments in the BLOCKS and PRINTS databases. The resulting database, called IDENTIFY (http://motif., contains more than 50,000 motifs. For each alignment, the database contains several motifs having a probability of matching a false positive that range from 10(-10) to 10(-5). Highly specific motifs are well suited for searching entire proteomes, while generating very few false predictions. IDENTIFY assigns biological functions to 25-30% of all proteins encoded by the Saccharomyces cerevisiae genome and by several bacterial genomes. In particular, IDENTIFY assigned functions to 172 of proteins of unknown function in the yeast genome.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center