Format

Send to

Choose Destination
See comment in PubMed Commons below
Ann N Y Acad Sci. 1998 Apr 15;842:7-15.

Multifunctional lens crystallins and corneal enzymes. More than meets the eye.

Author information

1
Laboratory of Molecular and Development Biology, National Eye Intitute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA. joram@helix.nih.gov

Abstract

The abundant water-soluble proteins, called crystallins, of the transparent, refractive eye lens have been recruited from metabolic enzymes and stress-protective proteins by a process called "gene sharing." Many crystallins are also present at lower concentration in nonocular tissues where they have nonrefractive roles. The complex expression pattern of the mouse alpha B-crystallin/small heat shock protein gene is developmentally controlled at the transcriptional level by a combinatorial use of shared and lens-specific regulatory elements. A number of crystallin genes, including that for alpha B-crystallin, are activated by Pax-6, a conserved transcription factor for eye evolution. Aldehyde dehydrogenase class 3 and transketolase are metabolic enzymes comprising extremely high proportions of the water-soluble proteins of the cornea and may have structural as well as enzymatic roles, reminiscent of lens enzyme-crystallins. Inductive processes appear to be important for the corneal-preferred expression of these enzymes. The use of the same protein for entirely different functions by a gene-sharing mechanism may be a general strategy based on evolutionary tinkering at the level of gene regulation.

PMID:
9599288
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center