Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell. 1998 May;10(5):849-57.

Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis.

Author information

  • 1Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.

Erratum in

  • Plant Cell 1998 Oct;10(10):1769.

Abstract

Protein tyrosine kinases and phosphatases play a vital role in the regulation of cell growth and differentiation in animal systems. However, none of these enzymes has been characterized from higher plants. In this study, we isolated a cDNA encoding a putative protein tyrosine phosphatase (PTPase) from Arabidopsis (referred to as AtPTP1). The expression level of AtPTP1 is highly sensitive to environmental stresses. High-salt conditions increased AtPTP1 mRNA levels, whereas cold treatment rapidly eliminated the AtPTP1 transcript. The recombinant AtPTP1 protein specifically hydrolyzed phosphotyrosine, but not phosphoserine/threonine, in protein substrates. Site-directed mutagenesis defined two highly conserved amino acids, cysteine-265 and aspartate-234, as being essential for the phosphatase activity of the AtPTP1 protein, suggesting a common catalytic mechanism for PTPases from all eukaryotic systems. In summary, we have identified AtPTP1 as a tyrosine-specific protein phosphatase that may function in stress responses of higher plants.

PMID:
9596642
PMCID:
PMC144019
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center