Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell. 1998 May;10(5):659-72.

Rhizobium nod factor signaling. Evidence for a g protein-mediated transduction mechanism

Author information

1
Laboratoire de Biologie Moleculaire des Relations Plantes-Microorganismes, INRA-CNRS UMR215, BP 27, 31326 Castanet-Tolosan Cedex, France.

Abstract

Rhizobium nodulation (Nod) factors are lipochitooligosaccharide signals that elicit key symbiotic developmental responses in the host legume root. In this study, we have investigated Nod factor signal transduction in the Medicago root epidermis by using a pharmacological approach in conjunction with transgenic plants expressing the Nod factor-responsive reporter construct pMtENOD12-GUS. Evidence for the participation of heterotrimeric G proteins in Nod factor signaling has come from three complementary observations: (1) the amphiphilic peptides mastoparan and Mas7, known G protein agonists, are able to mimic Nod factor-induced epidermal MtENOD12 expression; (2) growth of plants in nodulation-inhibiting conditions (10 mM NH4NO3) leads to a dramatic reduction in both Nod factor- and mastoparan-elicited gene expression; and (3) bacterial pertussis toxin, a well-characterized G protein antagonist, blocks the activities of both the Nod factor and mastoparan. In addition, we have found that antagonists that interfere with phospholipase C activity (neomycin and U73122) and Ca2+ influx/release (EGTA, La3+, and ruthenium red) block Nod factor/mastoparan activity. Taken together, these results are consistent with a Nod factor signal transduction mechanism involving G protein mediation coupled to the activation of both phosphoinositide and Ca2+ second messenger pathways.

PMID:
9596628
PMCID:
PMC144376
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center