Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 1998 May 11;792(2):353-7.

Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.

Author information

1
Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, NE 68198-4575, USA. wgmayhan@mail.unmc.edu

Abstract

The goal of this study was to examine the effect of lipopoly saccharide on the permeability of the blood-brain barrier and reactivity of cerebral arterioles. We examined the pial microcirculation in rats using intravital fluorescence microscopy. Permeability of the blood-brain barrier (clearance of fluorescent-labeled dextran; molecular weight 10,000 Da; FITC-dextran-10K) and diameter of pial arterioles were measured in the absence and presence of topical application of vehicle (saline) or lipopolysaccharide (200 ng/ml). During superfusion with vehicle, clearance of FITC-dextran-10K from pial vessels was minimal, and diameter of pial arterioles remained constant. Topical application of lipopolysaccharide (200 ng/ml) produced an increase in clearance of FITC-dextran-10K and dilated pial arterioles. To determine whether lipopolysaccharide-induced changes in permeability of the blood-brain barrier and dilatation of cerebral arterioles was related to the synthesis/release of inducible nitric oxide, we examined the effects of aminoguanidine (0.5 mM). Aminoguanidine inhibited lipopolysaccharide-induced increases in permeability of the blood-brain barrier and dilatation of cerebral arterioles. The findings of the present study suggest that lipopolysaccharide increases permeability of the blood-brain barrier and diameter of pial arterioles via the activation of inducible nitric oxide synthase.

PMID:
9593993
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center