Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1998 May 6;1364(2):101-11.

Physiological, biochemical and molecular aspects of mitochondrial complex I in plants

Author information

1
Allgemeine Botanik, Universitat Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.

Abstract

Respiratory complex I of plant mitochondria has to date been investigated with respect to physiological function, biochemical properties and molecular structure. In the respiratory chain complex I is the major entry gate for low potential electrons from matrix NADH, reducing ubiquinone and utilizing the released energy to pump protons across the inner membrane. Plant complex I is active against a background of several other NAD(P)H dehydrogenases, which do not contribute in proton pumping, but permit and establish several different routes of shuttling electrons from NAD(P)H to ubiquinone. Identification of the corresponding molecular structures, that is the proteins and genes of the different NADH dehydrogenases, will allow more detailed studies of this interactive regulatory network in plant mitochondria. Present knowledge of the structure of complex I and the respective mitochondrial and nuclear genes encoding various subunits of this complex in plants is summarized here. Copyright 1998 Elsevier Science B.V.

PMID:
9593845
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center