Format

Send to

Choose Destination
Neurology. 1998 May;50(5 Suppl 5):S17-25.

Levodopa therapy: consequences of the nonphysiologic replacement of dopamine.

Author information

1
Experimental Therapeutics Branch, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA.

Abstract

Normal motor function is dependent on the highly regulated synthesis and release of the transmitter dopamine by neurons projecting from the substantia nigra to the corpus striatum. Parkinson's disease involves the progressive degeneration of these neurons. Its core symptoms are a direct consequence of a striatal insufficiency of intrasynaptic dopamine. Levodopa, the standard of care for the treatment of PD, acts after its conversion to dopamine by restoring striatal dopaminergic transmission. However, there are significant differences between the normally functioning dopamine system and the restoration of function provided by standard levodopa treatment. Increasing clinical and preclinical evidence suggests that the intermittent stimulation of dopamine receptors resulting from current therapeutic regimens contributes to the response complications that ultimately affect most parkinsonian patients. It now appears that chronic nonphysiologic stimulation of dopaminergic receptors on striatal GABAergic neurons activates characteristic signaling pathways, leading to a potentiation of the synaptic efficacy of adjacent glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype. As a result, function of these GABAergic efferent neurons changes in ways that favor the appearance of motor complications. Conceivably, use of dopaminomimetic replacement strategies that provide more continuous dopamine receptor stimulation will act to prevent or alleviate these disabling complications. A number of promising approaches to achieving this goal are now under development.

PMID:
9591518
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center