Format

Send to

Choose Destination
Int J Radiat Biol. 1998 Apr;73(4):423-34.

Prenatal irradiation: a major concern for the developing brain.

Author information

1
Department of Radiation Oncology, University of Kansas Medical Center, Kansas City 66160-7321, USA.

Abstract

Irradiation of the mammalian foetus produces a broad spectrum of congenital abnormalities, growth retardations, developmental delays, and functional deficits, depending upon the dose and the specific gestational phase of irradiation. The developing brain is particularly susceptible to production of deleterious effects, with decreased brain size, behavioural alterations, and mental retardation having been documented. Supplementing the limited human data, rodent models have been extensively used to investigate the specific processes by which relatively low doses, with correspondingly minor cellular damage to the developing neocortex, can produce dramatic postnatal consequences in brain structure and function. The effects of a variety of physical (dose, linear energy transfer, dose rate, fractionation) and biological (species, strain, gestational age, time course post-irradiation) parameters have been examined in an attempt to provide much needed information on such critical aspects as dose response, threshold doses for effect, and extrapolation to human risk estimates. Various acute cellular responses (e.g. appearance of pyknotic cells and macrophages) observed in the developing neocortex 0-24 h after in utero irradiation can be associated with postnatal effects. Moreover, it is possible to correlate thinning of specific layers of the cerebral cortex with specific behavioural aberrations, allowing prediction of brain structural changes from functional alterations, and vice versa. Thus, it is possible to speculate as to the mechanisms and targets for extremely sensitive, radiation-induced cellular damage in the developing foetal brain, that will interfere with the orderly and precisely programmed development of the mammalian brain, leading finally to postnatal expression as delays in growth and development, perturbations in behaviour, and alterations in brain structure.

PMID:
9587081
DOI:
10.1080/095530098142266
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center