Format

Send to

Choose Destination
See comment in PubMed Commons below
Autoimmunity. 1998;27(2):109-22.

Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells.

Author information

1
Department of Microbiology and Infectious Disease, Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Alberta, Canada.

Abstract

Insulin-dependent diabetes mellitus (IDDM) is caused by the progressive autoimmune destruction of insulin-producing pancreatic beta cells. Although the pathogenesis of autoimmune IDDM has been extensively studied, the precise mechanisms involved in the initiation and progression of beta cell destruction remain unclear. Animal models used in the study of IDDM, such as the BioBreeding (BB) rat and the nonobese diabetic (NOD) mouse, have greatly enhanced our understanding of the pathogenic mechanisms involved in this disease. In these animals, macrophages and/or dendritic cells are the first cell types to infiltrate the pancreatic islets. Macrophages must be involved in the pathogenesis of IDDM early on, since inactivation of macrophages results in the near-complete prevention of insulitis and diabetes in both NOD mice and BB rats. The presentation of beta cell-specific autoantigens by macrophages and/or dendritic cells to CD4+ T helper cells, in association with MHC class II molecules, is considered the initial step in the development of autoimmune IDDM. The activated macrophages secrete IL-12, which stimulates Th1 type CD4+ T cells. The CD4+ T cells secrete IFN-gamma and IL-2. IFN-gamma activates other resting macrophages, which, in turn, release cytokines, such as IL-1beta, TNF-alpha, and free radicals, which are toxic to beta cells. During this process, IL-2 and other cytokines induce the migration of CD8+ peripheral T cells to the inflamed islets, perhaps by inducing the expression of a specific homing receptor. The precytotoxic CD8+ T cells that bear beta cell-specific autoantigen receptors differentiate into cytotoxic effector T cells upon recognition of the beta cell-specific peptide bound to MHC class I molecules in the presence of beta cell-specific CD4+ T helper cells. The cytotoxic CD8+ T cells then effect beta cell damage by releasing perforin and granzyme, and by Fas-mediated apoptosis. In this way, macrophages, CD4+ T cells, and CD8+ T cells synergistically destroy beta cells, resulting in the onset of autoimmune IDDM.

PMID:
9583742
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center