Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5474-9.

The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors.

Author information

Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA.


We report that MOP3 is a general dimerization partner for a subset of the basic-helix-loop-helix (bHLH)-PER-ARNT-SIM (PAS) superfamily of transcriptional regulators. We demonstrated that MOP3 interacts with MOP4, CLOCK, hypoxia-inducible factor 1alpha (HIF1alpha), and HIF2alpha. A DNA selection protocol revealed that the MOP3-MOP4 heterodimer bound a CACGTGA-containing DNA element. Transient transfection experiments demonstrated that the MOP3-MOP4 and MOP3-CLOCK complexes bound this element in COS-1 cells and drove transcription from a linked luciferase reporter gene. We also deduced the high-affinity DNA binding sites for MOP3-HIF1alpha complex (TACGTGA) and used transient transfection experiments to demonstrate that the MOP3-HIF1alpha and MOP3-HIF2alpha heterodimers bound this element, drove transcription, and responded to cellular hypoxia. Finally, we found that MOP3 mRNA expression overlaps in a number of tissues with each of its four potential partner molecules in vivo.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center