Format

Send to

Choose Destination
J Mol Biol. 1998 Apr 24;278(1):79-88.

TRF1 promotes parallel pairing of telomeric tracts in vitro.

Author information

1
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, USA.

Abstract

Human telomeres consist of long arrays of TTAGGG repeats bound to the telomere-specific proteins, TRF1 and TRF2. Here we describe the structure of in vitro complexes formed between telomeric DNA and TRF1 as deduced by electron microscopy. Visualization of TRF1 bound to DNA containing six or 12 tandem TTAGGG repeats revealed a population of DNAs containing a spherical protein complex localized just to the repeats. Mass analysis of the protein complexes suggested binding of TRF1 dimers and tetramers to the TTAGGG repeats. The DNA was not significantly compacted or extended by protein binding. TRF1 formed filamentous structures on longer telomeric repeat arrays (>/=27 repeats) consistent with the presence of an array of bound TRF1 dimers. Unexpectedly, there was a strong propensity for two telomeric tracts to form paired synapses over the TRF1 covered segment. Up to 30% of the TRF1-bound DNAs could be found in a paired configuration with a strong bias for a parallel as contrasted to an antiparallel arrangement. TRF1-induced pairing was confirmed using a ligation assay which detected the formation of DNA multimers dependent on the presence of TRF1 and a 27mer repeat array in the DNA. These findings suggests that this protein may have an architectural role at telomeres. We discuss the possibility that TRF1-dependent changes in the conformation of telomeres are involved in the regulation of telomere length.

PMID:
9571035
DOI:
10.1006/jmbi.1998.1686
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center