Send to

Choose Destination
Eur J Pharmacol. 1998 Feb 19;343(2-3):303-12.

Characterization of 5-HT1A receptor-mediated [35S]GTPgammaS binding in rat hippocampal membranes.

Author information

Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA.


Stimulation of [35S]GTPgammaS binding by serotonin (5-hydroxytryptamine, 5-HT) receptor ligands was characterized in rat hippocampal membranes. The optimized assay contained 30-50 microg protein, 300 microM GDP and 0.1 nM [35S]GTPgammaS, incubated at 37 degrees C for 20 min. At 10 microM, the 5-HT1A receptor agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin [R(+)-8-OH-DPAT] stimulated GTPgammaS binding from 27.1 +/- 2.5 to 45.7 +/- 4.2 fmol/mg protein. Increasing the protein concentration did not affect the absolute difference between basal and maximal GTPgammaS binding nor the EC50, but decreased the percent stimulation. The non-selective agonists serotonin and 5-carboxamidotryptamine were 30-35% more efficacious, whereas the partial agonists buspirone and S(-)-8-hydroxy-2-(di-n-propylamino)tetralin stimulated GTPgammaS binding by 19 +/- 1 and 43 +/- 3%, respectively, compared to R(+)-8-OH-DPAT. Neither the 5-HT2 receptor agonist [(+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl] (DOI) nor the 5-HT1A receptor antagonists WAY 100,635 (n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) and spiperone altered basal GTPgammaS binding. WAY 100,635 abolished the effect of R(+)-8-OH-DPAT, but only reduced the effect of serotonin by 88 +/- 3%. Finally, methiothepin antagonized R(+)-8-OH-DPAT-stimulated GTPgammaS binding and reduced basal GTPgammaS binding by itself. The reduction was not affected by WAY 100,635. We have characterized a method to assess functional activity at 5-HT1A receptors in rat hippocampal membranes by measuring agonist-induced [35S]GTPgammaS binding.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center