Send to

Choose Destination
Mol Microbiol. 1998 Mar;27(6):1171-82.

PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance.

Author information

University of Washington, Department of Medicine, Seattle 98195, USA.


Antimicrobial peptides are distributed throughout the animal kingdom and are a key component of innate immunity. Salmonella typhimurium regulates mechanisms of resistance to cationic antimicrobial peptides through the two-component systems PhoP-PhoQ and PmrA-PmrB. Polymyxin resistance is encoded by the PmrA-PmrB regulon, whose products modify the lipopolysaccharide (LPS) core and lipid A regions with ethanolamine and add aminoarabinose to the 4' phosphate of lipid A. Two PmrA-PmrB-regulated S. typhimurium loci (pmrE and pmrF) have been identified that are necessary for resistance to polymyxin and for the addition of aminoarabinose to lipid A. One locus, pmrE, contains a single gene previously identified as pagA (or ugd) that is predicted to encode a UDP-glucose dehydrogenase. The second locus, pmrF, is the second gene of a putative operon predicted to encode seven proteins, some with similarity to glycosyltransferases and other complex carbohydrate biosynthetic enzymes. Genes immediately flanking this putative operon are also regulated by PmrA-PmrB and/or have been associated with S. typhimurium polymyxin resistance. This work represents the first identification of non-regulatory genes necessary for modification of lipid A and subsequent antimicrobial peptide resistance, and provides support for the hypothesis that lipid A aminoarabinose modification promotes resistance to cationic antimicrobial peptides.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center