Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 1998 Apr;148(4):1475-82.

DNA polymerase fidelity: from genetics toward a biochemical understanding.

Author information

1
Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles 90089-1340, USA. mgoodman@mizar.usc.edu

Abstract

This review summarizes mutagenesis studies, emphasizing the use of bacteriophage T4 mutator and antimutator strains. Early genetic studies on T4 identified mutator and antimutator variants of DNA polymerase that, in turn, stimulated the development of model systems for the study of DNA polymerase fidelity in vitro. Later enzymatic studies using purified T4 mutator and antimutator polymerases were essential in elucidating mechanisms of base selection and exonuclease proofreading. In both cases, the base analogue 2-aminopurine (2AP) proved tremendously useful-first as a mutagen in vivo and then as a probe of DNA polymerase fidelity in vitro. Investigations into mechanisms of DNA polymerase fidelity inspired theoretical models that, in turn, called for kinetic and thermodynamic analyses. Thus, the field of DNA synthesis fidelity has grown from many directions: genetics, enzymology, kinetics, physical biochemistry, and thermodynamics, and today the interplay continues. The relative contributions of hydrogen bonding and base stacking to the accuracy of DNA synthesis are beginning to be deciphered. For the future, the main challenges lie in understanding the origins of mutational hot and cold spots.

PMID:
9560367
PMCID:
PMC1460091
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center