Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 1998 Jan 15;160(2):770-7.

TGF-beta 1 induces the cyclin-dependent kinase inhibitor p27Kip1 mRNA and protein in murine B cells.

Author information

1
Laboratory of Experimental Radiology, Aichi Cancer Center Research Institute, Nagoya, Japan.

Abstract

TGF-beta1 inhibits the cell cycle progression of many types of cells by arresting them in the G1 phase. This cell cycle arrest has been attributed to the regulatory effects of TGF-beta1 on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of proteins, such as p15INK4b, p21WAF1/Cip1, and p27Kip1, that physically associate with cyclins, cyclin-dependent kinases (Cdk), or cyclin-Cdk complexes. In epithelial cell lines, TGF-beta1 was previously shown to inhibit cell cycle progression through down-regulation of Cdk4 and/or up-regulation of p15INK4b and/or p21WAF1/Cip1. However, TGF-beta1 had little or no effect on the p27Kip1 mRNA and protein levels. In this report, we show that, in contrast to observations in epithelial cell lines, TGF-beta1 increased the p27Kip1 mRNA and protein levels in the murine B cell lines CH31 and WEHI231. This TGF-beta1-mediated induction of p27Kip1 also resulted in an increased association of p27Kip1 with Cdk2 and a decreased Cdk2 kinase activity. In contrast to epithelial cells, however, TGF-beta1 had little or no effect on the Cdk4 and p21WAF1/Cip1 protein levels in these B cells. Finally, although several studies suggested a direct role of p53 in TGF-beta1-mediated cell cycle arrest in epithelial cells, TGF-beta1 inhibited cell cycle progression in CH31 even in the absence of wild-type p53. Taken together, these results suggest that TGF-beta1 induces G1 arrest in B cells primarily through a p53-independent up-regulation of p27Kip1 protein.

PMID:
9551912
[Indexed for MEDLINE]
Free full text

MeSH terms, Substances

MeSH terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center