Send to

Choose Destination
Curr Biol. 1998 Apr 9;8(8):467-70.

p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice.

Author information

Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.


Members of the tumour necrosis factor (TNF) receptor family exert pleiotropic effects and can trigger both apoptosis and proliferation [1]. In their cytoplasmic region, some of these receptors share a conserved sequence motif - the 'death domain' - which is required for transduction of the apoptotic signal by recruiting other death-domain-containing adaptor molecules like the Fas-associated protein FADD/MORT1 or the TNF receptor-associated protein TRADD [2-4]. FADD links the receptor signal to the activation of the caspase family of cysteine proteases [5,6]. Functional inactivation of individual receptor family members often fails to exhibit a distinctive phenotype, probably because of redundancy [7-9]. To circumvent this problem, we used a dominant-negative mutant of FADD (FADD-DN) which should block all TNF receptor family members that use FADD as an adaptor. We established transgenic mice expressing FADD-DN under the influence of the lck promoter and investigated the consequences of its expression in T cells. As expected, FADD-DN thymocytes were protected from death induced by CD95 (Fas/Apo1), whereas apoptosis induced by ultraviolet (UV) irradiation, anti-CD3 antibody treatment or dexamethasone was unaffected, as was spontaneous cell death. Surprisingly, however, we also observed profound inhibition of thymocyte proliferation in vivo and of activation-induced proliferation of thymocytes and mature T cells in vitro. This inhibition of proliferation was not due to increased cell death and appeared to be p53 dependent.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center