Format

Send to

Choose Destination
Biochemistry. 1998 Apr 14;37(15):5074-85.

The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase.

Author information

1
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

Abstract

The essential photosynthetic enzyme phosphoribulokinase (PRK) is responsible for the conversion of ribulose 5-phosphate (Ru5P) to ribulose 1,5-bisphosphate, the substrate for the CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). We have determined the structure of the octameric bacterial form of PRK to a resolution of 2.5 A. The protein is folded into a seven-member mixed beta-sheet surrounded by alpha-helices, giving the overall appearance of the nucleotide monophosphate family of kinases. Homology with the nucleotide monophosphate kinases suggests a number of amino acid residues that are likely to be important in catalysis and suggests the roles of some amino acid residues that have been mutated prior to the determination of the structure. Further, sequence identity across eukaryotic and prokaryotic species and a calculation of the buried surface area suggests the identity within the octamer of a dimer conserved throughout evolution. The width of the groove leading to the active site is consistent with an oriented molecule of thioredoxin controlling the oxidation state of two cysteines that regulate activity in the eukaryotic enzymes. Although neither Asp 42 nor Asp 169 can be definitively assigned as the catalytic base, the crystal structure suggests the location of a ribulose 5-phosphate binding site and suggests a role for several of the conserved basic residues.

PMID:
9548738
DOI:
10.1021/bi972805y
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center