Format

Send to

Choose Destination
Biochim Biophys Acta. 1998 Apr 1;1397(1):102-17.

Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase.

Author information

1
German Cancer Research Center, Interaction of Carcinogens with Biological Macromolecules Division, Heidelberg, Germany.

Abstract

Literature documents that glycolytic enzymes (among them lactate dehydrogenase and 3-phosphoglycerate kinase) can reside in nuclei of mammalian cells and exert functions in DNA replication, transcription and DNA repair, in addition to their role as catalysts in the cytoplasm. Transfer of glycolytic enzymes to cell nuclei requires modification, for example phosphorylation. We studied the effects of phosphorylated lactate dehydrogenase and 3-phosphoglycerate kinase on (i) UV-induced DNA repair, using permeabilized human fibroblasts, and (ii) in vitro DNA synthesis catalyzed by purified DNA polymerases alpha, delta, and epsilon from proliferating rat liver. (i) Phosphorylated lactate dehydrogenase stimulated UV-induced DNA repair synthesis in normal fibroblasts in a dose-dependent manner; the unphosphorylated enzyme slightly inhibited. In repair-deficient xeroderma pigmentosum fibroblasts reparative synthesis was not enhanced whether lactate dehydrogenase was phosphorylated or not, indicating that reparative DNA synthesis must be possible in order to be stimulated. (ii) Activity of purified DNA polymerases alpha, delta, and epsilon was differentially stimulated or inhibited, according to the phosphorylation status of lactate dehydrogenase. DNA polymerases were also modulated by 3-phosphoglycerate kinase, depending on the primer-templates used which were gapped DNA (mimicking a repair mode of DNA synthesis) or single-stranded M13 DNA (representing the replicative mode of DNA synthesis). Since glycolytic enzymes in cell nuclei retain binding ability for their cofactors, cytoplasmic substrates and inhibitors, a regulatory linkage might exist between the energy state of a cell and its replicative and reparative functions.

PMID:
9545551
DOI:
10.1016/s0167-4781(97)00229-7
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center