Send to

Choose Destination
Int J Syst Bacteriol. 1998 Jan;48 Pt 1:75-89.

Phylogeny of the family Moraxellaceae by 16S rDNA sequence analysis, with special emphasis on differentiation of Moraxella species.

Author information

Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden.


Thirty-three strains previously classified into 11 species in the bacterial family Moraxellaceae were subjected to phylogenetic analysis based on 16S rRNA sequences. The family Moraxellaceae formed a distinct clade consisting of four phylogenetic groups as judged from branch lengths, bootstrap values and signature nucleotides. Group I contained the classical moraxellae and strains of the coccal moraxellae, previously known as Branhamella, with 16S rRNA similarity of > or = 95%. A further division of group I into five tentative clusters is discussed. Group II consisted of two strains representing Moraxella atlantae and Moraxella osloensis. These strains were only distantly related to each other (93.4%) and also to the other members of the Moraxellaceae (< or = 93%). Therefore, reasons for reclassification of these species into separate and new genera are discussed. Group III harboured strains of the genus Psychrobacter and strain 752/52 of [Moraxella] phenylpyruvica. This strain of [M.] phenylpyruvica formed an early branch from the group III line of descent. Interestingly, a distant relationship was found between Psychrobacter phenylpyruvicus strain ATCC 23333T (formerly classified as [M.] phenylpyruvica) and [M.] phenylpyruvica strain 752/52, exhibiting less than 96% nucleotide similarity between their 16S rRNA sequences. The establishment of a new genus for [M.] phenylpyruvica strain 752/52 is therefore suggested. Group IV contained only two strains of the genus Acinetobacter. Strategies for the development of diagnostic probes and distinctive sequences for 16S rRNA-based species-specific assays within group I are suggested. Although these findings add to the classificatory placements within the Moraxellaceae, analysis of a more comprehensive selection of strains is still needed to obtain a complete classification system within this family.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center