Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Dev Brain Res. 1998 Feb 10;105(2):195-207.

Afferent arrival and onset of functional activity in the trigeminothalamic pathway of the rat.

Author information

Research School of Biological Sciences, Australian National University, Canberra, Australia.


In this study, a novel in vitro slice preparation has been used to study the anatomical and physiological development of the trigeminothalamic pathway in the prenatal and neonatal rat. Anterograde tracing studies showed that the most rostral trigeminal fibres had reached the cephalic flexure by embryonic day (E)15, and entered the diencephalon by E16. By E17 the first few fibres had reached the ventroposteromedial thalamic nucleus (VPM) where they terminated in growth cones. The projection was more substantial and fibres had begun branching by E18, and arbors were more elaborate by E19. The fibres densely filled the nucleus by the day of birth (PO). The physiological studies showed that postsynaptic responses to stimulation of the trigeminal nerve or principal sensory nucleus (Pr5) could first be recorded at E17. Reliable responses to stimulation of either the nerve or Pr5 were recorded from E18 on. Stimulation of Pr5 enabled both axonal and synaptic signals to recorded in VPM. A GABAergic influence was acting to decrease the overall level of excitability in the thalamus from E18. In prenatal animals, the excitatory response was primarily mediated by NMDA receptors, and by P1 a non-NMDA mediated component was beginning to appear. These results demonstrate that the capacity for axonal conduction in the trigeminothalamic fibres and synaptic transmission in the thalamus are present from the time that anatomical connections are first established.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center