Format

Send to

Choose Destination
Prog Retin Eye Res. 1998 Jan;17(1):33-58.

Ophthalmic drug delivery systems--recent advances.

Author information

1
Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes, France.

Abstract

Eye-drops are the conventional dosage forms that account for 90% of currently accessible ophthalmic formulations. Despite the excellent acceptance by patients, one of the major problems encountered is rapid precorneal drug loss. To improve ocular drug bioavailability, there is a significant effort directed towards new drug delivery systems for ophthalmic administration. This chapter will focus on three representative areas of ophthalmic drug delivery systems: polymeric gels, colloidal systems, cyclodextrins and collagen shields. Hydrogels generally offer a moderate improvement of ocular drug bioavailability with the disadvantage of blurring of vision. In situ activated gel-forming systems are preferred as they can be delivered in drop form with sustained release properties. Colloidal systems including liposomes and nanoparticles have the convenience of a drop, which is able to maintain drug activity at its site of action and is suitable for poorly water-soluble drugs. Among the new therapeutic approaches in ophthalmology, cyclodextrins represent an alternative approach to increase the solubility of the drug in solution and to increase corneal permeability. Finally, collagen shields have been developed as a new continuous-delivery system for drugs that provide high and sustained levels of drugs to the cornea, despite a problem of tolerance. It seems that new tendency of research in ophthalmic drug delivery systems is directed towards a combination of several drug delivery technologies. There is a tendency to develop systems which not only prolong the contact time of the vehicle at the ocular surface, but which at the same time slow down the elimination of the drug. Combination of drug delivery systems could open a new directive for improving results and the therapeutic response of non-efficacious systems.

PMID:
9537794
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center