Send to

Choose Destination
Plant Mol Biol. 1998 Mar;36(5):717-24.

Molecular characterization of a single mitochondria-associated double-stranded RNA in the green alga Bryopsis.

Author information

Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan.


Mitochondria from the green alga Bryopsis sp. very often contained a 4.5 kb double-stranded RNA (dsRNA) at a defined level. Complementary DNA probes derived from the mitochondrial dsRNA hybridized with none of the algal chloroplast dsRNAs of 1.7 to 2.2 kb, but did hybridize with a similar-sized dsRNA among several dsRNAs from the mitochondria of B. maxima. Sequence analysis of the mitochondrial dsRNA from Bryopsis sp. revealed only two large, overlapping, open reading frames (ORFs) on one strand if UGA was taken as a non-termination codon, suggesting the independent phylogenetic evolution of the mitochondrial dsRNA. Consensus sequence for RNA-dependent RNA polymerase was found within the longer ORF (2472 bp) of the dsRNA. The overlapping 52 bp of the ORFs in different reading frames is suggestive of the occurrence of a -1 ribosomal frameshift in the mitochondrial translation system. The observed simple genetic structures suggest that the algal mitochondrial dsRNA might be deficient in a gene for movement from cell to cell in host plants and, hence, has a plasmid-like nature that is distinct from that of infectious plant viruses. The nature and origin of the endogenous dsRNAs of various sizes and their relationships are discussed.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center