Format

Send to

Choose Destination
Life Sci. 1998;62(12):1081-8.

Protease inhibitors protect macrophages from lipopolysaccharide-induced cytotoxicity: possible role for NF-kappaB.

Author information

1
Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, Halle (Saale), Germany. abate@pharmazie.uni-halle.de

Abstract

Recent studies suggest lipopolysaccharide (LPS) mediated cell death as underlying mechanism of hyporesponsiveness and dysfunction of macrophages in the late phase of septic shock. In the present study LPS (0.001 - 30 microg/ml) caused a concentration-dependent toxicity in the macrophage cell line (J774.1A) within 24 h. The toxicity induced by LPS (1 microg/ml) was completely inhibited by the serine protease inhibitors, N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK) as measured by the mitochondrial-dependent oxidation of 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromid (MTT) to formazan. These inhibitors antagonize the activation of nuclear transcription factor-kappaB (NF-kappaB) indirectly by inhibiting I kappaB alpha-protease. SN50, a direct inhibitor of NF-kappaB translocation into the nucleus also protected macrophages from LPS-mediated toxicity. We conclude from these data that the early phase signal transduction pathway leading to LPS-mediated cytotoxicity in macrophages involves the activation of NF-kappaB. Thus, I kappaB alpha-protease inhibitors might serve as therapeutical agents to maintain macrophage viability during sepsis and to prevent sepsis-induced immune dysfunction.

PMID:
9519810
DOI:
10.1016/s0024-3205(98)00031-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center