Send to

Choose Destination
Microsurgery. 1996;17(11):589-96.

The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study.

Author information

Department of Plastic and Reconstructive Surgery, McGill University, Montreal Children's Hospital, Quebec, Canada.


Functional recovery following motor nerve injury and repair is directly related to the degree of muscle atrophy that takes place during the period of nerve regeneration. The extent of this muscle atrophy is related to a number of factors including the accuracy of nerve repair; the distance through which the nerve must regenerate; the age of the patient; and the type of nerve injury and other associated tendon and soft tissue and bony damage. Atrophy of muscle that is always associated with nerve injury is a combination of disuse and degeneration. Our hypothesis proposed the following question: "Would continuous electrical stimulation of the denervated muscle during the period of nerve regeneration maintain the integrity of the muscle fibers and hence their potential functional capacity?" We have completed a series of animal studies (rabbit and canine models) in our laboratory using a completely implantable system to provide continuous muscle stimulation following nerve injury and microsurgical repair. In several different experiments, the nerves under study were cut and repaired at 4 and 12 cm from the muscles to study the effects of short- and long-term recovery. In all experiments, a beneficial effect was demonstrated with improved morphology and functional capacity of the reinnervated stimulated muscles when compared with nonstimulated controls. In addition, electrical stimulation using this implantable system could be applied for extended periods without evidence of discomfort in the experimental animals.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center