Format

Send to

Choose Destination
Toxicol Appl Pharmacol. 1998 Mar;149(1):107-19.

Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats.

Author information

1
Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

Abstract

It is well known that young animals are generally more sensitive to lethal effects of cholinesterase-inhibiting pesticides, but there are sparse data comparing less-than-lethal effects. We compared the behavioral and biochemical toxicity of chlorpyrifos in young (postnatal Day 17; PND17) and adult (about 70 days old) rats. First, we established that the magnitude of the age-related differences decreased as the rat matures. Next, we evaluated the time course of a single oral dose of chlorpyrifos in adult and PND17 male and female rats. Behavioral changes were assessed using a functional observational battery (with age-appropriate modifications for pre-weanling rats) and an evaluation of motor activity. Cholinesterase (ChE) activity was measured in brain and peripheral tissues and muscarinic receptor binding assays were conducted on selected tissues. Rats received either vehicle (corn oil) or chlorpyrifos (adult dose: 80 mg/kg; PND17 dose: 15 mg/kg); these doses were equally effective in inhibiting ChE. The rats were tested, and tissues were then taken at 1, 2, 3.5, 6.5, 24, 72, 168, or 336 h after dosing. In adult rats, peak behavioral changes and ChE inhibition occurred in males at 3.5 h after dosing, while in females the onset of functional changes was sooner, the time course was more protracted and recovery was slower. In PND17 rats, maximal behavioral effects and ChE inhibition occurred at 6.5 h after dosing, and there were no gender-related differences. Behavioral changes showed partial to full recovery at 24 to 72 h, whereas ChE inhibition recovered markedly slower. Blood and brain ChE activity in young rats had nearly recovered by 1 week after dosing, whereas brain ChE in adults had not recovered at 2 weeks. Muscarinic-receptor binding assays revealed apparent down-regulation in some brain areas, mostly at 24 and 72 h. PND17 rats generally showed more receptor down-regulation than adults, whereas only adult female rats showed receptor changes in striatal tissue that persisted for 2 weeks. Thus, compared to adults (1) PND17 rats show similar behavioral changes and ChE inhibition although at a five-fold lower dose; (2) the onset of maximal effects is somewhat delayed in the young rats; (3) ChE activity tended to recover more quickly in the young rats; (4) young rats appear to have more extensive muscarinic receptor down-regulation, and (5) young rats show no gender-related differences.

PMID:
9512733
DOI:
10.1006/taap.1997.8354
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center