Format

Send to

Choose Destination
Toxicol Appl Pharmacol. 1998 Mar;149(1):55-63.

Comparative toxicity of eugenol and its quinone methide metabolite in cultured liver cells using kinetic fluorescence bioassays.

Author information

1
Department of Medical Pharmacology and Toxicology, College of Medicine, Health Science Center, Texas A & M University, College Station 77843, USA.

Abstract

Comparative kinetic analyses of the mechanisms of toxicity of the alkylphenol eugenol and its putative toxic metabolite (quinone methide, EQM) were carried out in cultured rat liver cells (Clone 9, ATCC) using a variety of vital fluorescence bioassays with a Meridian Ultima laser cytometer. Parameters monitored included intracellular GSH and calcium levels ([Ca2+]i), mitochondrial and plasma membrane potentials (MMP and PMP), intracellular pH, reactive oxygen species (ROS) generation, and gap junction-mediated intercellular communication (GJIC). Cells were exposed to various concentrations of test compounds (1 to 1000 microM) and all parameters monitored directly after addition at 15 s intervals for at least 10 min. Eugenol depleted intracellular GSH, inhibited GJIC and generation of ROS, and had a modest effect on MMP at concentrations of 10 to 100 microM. At high concentrations (1000 microM), eugenol also affected [Ca2+]i, PMP, and pH. Effects of EQM were seen at lower concentrations (1 to 10 microM). The earliest and most potent effects of either eugenol or EQM were seen on GSH levels and GJIC. Coadministration of glutathione ethyl ester enhanced intracellular GSH levels by almost 100% and completely protected cells from cell death caused by eugenol and EQM. These results suggest that eugenol mediates its hepatotoxic effects primarily through depletion of cytoprotective thiols and interference in thiol-dependent processes such as GJIC. Furthermore, our results support the hypothesis that the toxic effects of eugenol are mediated through its quinone methide metabolite.

PMID:
9512727
DOI:
10.1006/taap.1997.8348
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center