Send to

Choose Destination
Curr Biol. 1998 Feb 26;8(5):257-66.

Design of allele-specific inhibitors to probe protein kinase signaling.

Author information

Department of Chemistry Princeton University Princeton, New Jersey 08544, USA.



Deconvoluting protein kinase signaling pathways using conventional genetic and biochemical approaches has been difficult because of the overwhelming number of closely related kinases. If cell-permeable inhibitors of individual kinases could be designed, the role of each kinase could be systematically assessed.


We have devised an approach combining chemistry and genetics to develop the first highly specific cell-permeable inhibitor of the oncogenic tyrosine kinase v-Src. A functionally silent active-site mutation was made in v-Src to distinguish it from all other cellular kinases. A tight-binding cell-permeable inhibitor of this mutant kinase that does not inhibit wild-type kinases was designed and synthesized. In vitro and whole-cell assays established the unique specificity of the mutant v-Src-inhibitor pair. The inhibitor reversed cell transformation by the engineered but not the 'wild type' v-Src, establishing that changes in cellular signaling can be attributed to specific inhibition of the engineered kinase. The generality of the method was tested by engineering another tyrosine kinase, Fyn, to contain the corresponding active-site mutation to the one in v-Src. The same compound that inhibited mutant v-Src could also potently inhibit the engineered Fyn kinase.


Allele-specific cell-permeable inhibitors of individual Src family kinases can be rapidly developed in an approach that should be applicable to all kinases. This approach will be useful for the deconvolution of kinase-mediated cellular pathways and for validating novel kinases as good targets for drug discovery both in vitro and in vivo.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center