Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1998 Mar;79(3):1441-9.

Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells.

Author information

University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom.


Arachidonic acid or its metabolites have been implicated in the regulatory volume decrease (RVD) response after hypotonic cell swelling in some mammalian cells. The present study investigated the role of arachidonic acid (AA) during RVD in the human neuroblastoma cell line CHP-100. During the first nine minutes of hypo-osmotic exposure the rate of 3H-arachidonic acid (3H-AA) release increased to 250 +/- 19% (mean +/- SE, n = 22) as compared with cells under iso-osmotic conditions. This release was significantly inhibited after preincubation with AACOCF3, an inhibitor of the 85-kDa cytosolic phospholipase A2 (cPLA2). This indicates that a PLA2, most likely the 85-kDa cPLA2 is activated during cell swelling. In contrast, preincubation with U73122, an inhibitor of phospholipase C, did not affect the swelling-induced release of 3H-AA. Swelling-activated efflux of 36Cl and 3H-taurine were inhibited after preincubation with AACOCF3. Thus the swelling-induced activation of cPLA2 may be essential for stimulation of both 36Cl and 3H-taurine efflux during RVD. As the above observation could result from a direct effect of AA or its metabolite leukotriene D4 (LTD4), the effects of these agents were investigated on swelling-induced 36Cl and 3H-taurine effluxes. In the presence of high concentrations of extracellular AA, the swelling-induced efflux of 36Cl and 3H-taurine were inhibited significantly. In contrast, addition of exogenous LTD4 had no significant effect on the swelling-activated 36Cl efflux. Furthermore, exogenous AA increased cytosolic calcium levels as measured in single cells loaded with the calcium sensitive dye Fura-2. On the basis of these results we propose that cell swelling activates phospholipase A2 and that this activation via an increased production of AA or some AA metabolite(s) other than LTD4 is essential for RVD.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center