Send to

Choose Destination
J Cell Physiol. 1998 Apr;175(1):50-8.

Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer.

Author information

Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom.


Voltage-gated Na+ channels, classically associated with impulse conduction in excitable tissues, are also found in a variety of epithelial cell types where their possible functions are not known so well. We have previously reported expression of a voltage-gated Na+ channel specifically in the highly metastatic Mat-LyLu rat prostate cancer cell line; blockage of the current with tetrodotoxin (TTX) significantly reduced the invasiveness of the cells in vitro, suggesting that the channel may have a functional role in metastasis. The aim of the present study was to characterize this current using the whole-cell patch clamp recording technique, and compare it to Na+ currents found in various other tissues. The inward current of the Mat-LyLu cells was abolished completely, but reversibly, in Na+-free solution, confirming that Na+ was indeed the permeant ion. Activation occurred at -40 mV and currents reached a maximal amplitude at around 6 mV. Boltzmann fits to current activation and steady-state inactivation revealed that the currents were half activated at about -15 mV and half inactivated at -80 mV. Both current inactivation and recovery from inactivation followed a double-exponential time course with fast and slow components. The Na+ currents were highly sensitive to block by TTX (IC50 approximately 18 nM), whilst 1 microM mu-conotoxin GIIIA mostly had no effect. 100 microM Cd2+ also had no effect on the current, whilst 2.5 mM Cd2+, Mn2+, and Co2+ each caused a depolarizing shift in activation and a reduction in peak conductance of around 20%. In conclusion, the Na+ channel expressed in the highly metastatic Mat-LyLu cell line appeared to have electrophysiological and pharmacological properties of TTX-sensitive channels. Further work is needed, however, to elucidate the exact nature of the channel protein and the mechanism(s) of its involvement in cellular invasiveness.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center