Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 1998 Jan 15;506 ( Pt 2):415-30.

Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells.

Author information

Cell Physiology Group, School of Biological Sciences (G.38), University of Manchester, UK.


1. We have investigated the interactions between intracellular pH (pH1) and the intracellular free calcium concentration ([Ca2+]i) in isolated rat pancreatic acinar cells. The fluorescent dyes fura-2 and BCECF were used to measure [Ca2+]i and pHi, respectively. 2. Sodium acetate and ammonium chloride (NH4Cl) were used to acidify and alkalinize pHi, respectively. Cytosolic acidification had no effect on [Ca2+]i in resting pancreatic acinar cells, whereas cytosolic alkalinization released Ca2+ from intracellular stores. 3. Cytosolic acidification using either acetate or a CO2-HCO3(-)-buffered medium enhanced Ca2+ signals evoked by acetylcholine (ACh) and cholecystokinin (CCK). In contrast, both NH4Cl and trimethylamine (TMA) inhibited Ca2+ signals during stimulation with either ACh or CCK. This inhibitory effect was also observed in the absence of extracellular Ca2+, and was therefore not due to changes in Ca2+ entry. 4. Calcium oscillations evoked by physiological concentrations of CCK were enhanced by cytosolic acidification and inhibited by cytosolic alkalinization. 5. In order to determine the effects of pHi upon Ca2+ handling by intracellular Ca2+ stores, intraorganellar [Ca2+] was monitored using the low affinity Ca2+ indicator mag-fura-2 in permeabilized cells. Addition of NH4Cl, which is expected to alkalinize intraorganellar pH, did not alter intraorganellar [Ca2+] in permeabilized cells, suggesting that changing intraorganellar pH does not release Ca2+ from intracellular stores. Addition of NH4Cl or acetate also did not affect the rate of Ca2+ release induced by inositol 1,4,5-trisphosphate (InsP3). 6. Modification of extraorganellar ('cytosolic') pH did not affect the rate of ATP-dependent Ca2+ uptake into stores, but did modify the rate of Ca2+ release evoked by submaximal concentrations of InsP3. The rate of Ca2+ release was increased at more alkaline extraorganellar pHs. These results would suggest that manipulation of intraorganellar pH does not affect Ca2+ handling by the intracellular stores. In contrast, extraorganellar ('cytosolic') pH does affect InsP3-induced Ca2+ release from the stores. 7. In conclusion, changes in intracellular pH in pancreatic acinar cells can profoundly alter cytosolic [Ca2+]. This may shed light on earlier observations whereby cell-permeant weak acids and bases can modulate fluid secretion in epithelia.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center