Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 1998 Mar;70(3):1269-79.

Functional characterization of human N-methyl-D-aspartate subtype 1A/2D receptors.

Author information

  • 1SIBIA Neurosciences, Inc., La Jolla, California 92037, USA.


The human NMDAR2D subunit was cloned, and the pharmacological properties of receptors resulting from injection of transcripts encoding human NMDAR1A and NMDAR2D subunits in Xenopus oocytes were characterized by profiling NMDA receptor agonists and antagonists. We found that glutamate, NMDA, glycine, and D-serine were significantly more potent on hNMDAR1A/2D than on hNMDAR1A/2A or hNMDAR1A/2B. Also, the potencies of NMDA and glycine were higher for hNMDAR1A/2D than for hNMDAR1A/2C. Ifenprodil was more potent at hNMDAR1A/2B than at hNMDAR1A/2D, whereas 5,7-dichlorokynurenate was more potent at hNMDAR1A/2A than at hNMDAR1A/2D. As measured in transiently transfected human embryonic kidney 293 cells, the maximal inward current in the presence of external Mg2 occurred at -40 mV, and full block was not observed at negative potentials. Kinetic measurements revealed that the higher affinity of hNMDAR1A/2D for both glutamate and glycine relative to hNMDAR1A/2A and hNMDA1A/2B can be explained by slower dissociation of each agonist from hNMDAR1A/2D. The hNMDAR1A/2D combination represents a pharmacologically and functionally distinct receptor subtype and may constitute a potentially important target for therapeutic agents active in the human CNS.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center