Format

Send to

Choose Destination
Biochemistry. 1998 Feb 24;37(8):2648-59.

Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF.

Author information

1
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.

Abstract

The siderophore molecule enterobactin, a cyclic trimeric lactone of N-(2,3-dihydroxybenzoyl)serine, is synthesized and secreted by Escherichia coli in response to iron starvation. Here we report the first reconstitution of enterobactin synthetase activity from pure protein components: holo-EntB, EntE, and holo-EntF. Holo-EntB and holo-EntF were obtained by pretreatment of apo-EntB and apo-EntF with coenzyme A and EntD, thereby eliminating the requirement for EntD in the enterobactin synthetase. The holo-EntF monomer acts as the catalyst for the formation of the three amide and three ester bonds in enterobactin using ATP, L-serine, and acyl-holo-EntB, acylated with 2,3-dihydroxybenzoate by EntE, as substrates with a turnover rate of 120-140 min-1. There is no evidence for a stable complex of the enterobactin synthetase components. Mutation of holo-EntF in the thioesterase domain at the putative active site serine residue (Ser1138 to Ala) eliminated enterobactin synthetase activity; however, the mutant holo-EntF retained the ability to adenylate serine and to autoacylate itself by thioester formation between serine and its attached phosphopantetheine cofactor. The mutant holo-EntF also appeared to slowly release N-(2, 3-dihydroxybenzoyl)serine.

PMID:
9485415
DOI:
10.1021/bi9726584
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center