Format

Send to

Choose Destination
See comment in PubMed Commons below
Nephrol Dial Transplant. 1998 Jan;13(1):67-71.

An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists.

Author information

1
Renal Unit, Stobhill Hospital, Glasgow, UK.

Abstract

BACKGROUND:

The object of the study was to develop an artificial neural network (ANN) to identify patients with IgA nephropathy (IgAN) with a poor prognosis and to compare the predictions of the ANN with the predictions of six experienced nephrologists.

METHODS:

The following data from the time of renal biopsy were retrieved from the records of 54 patients with IgAN: age, sex, systolic and diastolic blood pressure, number of prescribed antihypertensive drugs, 24-h urine protein excretion, and serum creatinine. Patients aged less than 14 years, or who had serum creatinine > 350 mumol/l at presentation, liver disease or concomitant kidney disease were excluded. Outcome was assigned as 'stable' if serum creatinine was < 150 mumol/l after 7 years and 'non-stable' if serum creatinine was > or = 150 mumol/l. The ANN was trained and tested using a 'jack-knife' sampling technique and performance evaluated in terms of number of correct predictions, sensitivity and specificity. The six nephrologists were asked to predict outcome at 7 years for each patient using the same data as the ANN and their performance was assessed in the same manner.

RESULTS:

The ANN assigned the correct outcome to 47/54 (87.0%) patients: sensitivity 19/22 (86.4%), specificity 28/32 (87.5%). The mean score for nephrologists was 37.5/54 (69.4%, range 35-40), mean sensitivity 72% and mean specificity 66%.

CONCLUSIONS:

An ANN trained using routine clinical information obtained at the time of diagnosis can potentially predict 7-year outcome for renal function in IgAN more accurately than experienced nephrologists, and can therefore identify a group of high-risk patients requiring close follow-up.

PMID:
9481717
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Loading ...
    Support Center