Send to

Choose Destination
See comment in PubMed Commons below
Biochimie. 1997 Nov;79(11):673-80.

Structure, biological functions and inhibition of the HIV-1 proteins Vpr and NCp7.

Author information

Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, URA D1500 CNRS, Université René-Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France.


The Gag-encoded nucleocapsid protein NCp7 (72 amino acids) from HIV-1, the regulatory protein, Vpr (96 amino acids) and numerous derivatives have been synthesized by solid phase method and their structures determined by 2D NMR. In NCp7, the two highly folded zinc fingers of the Cx2Cx4Hx4C type are in close spacial proximity and the replacement of H by C in the first zinc finger or P by L in the short interdigital domain led to structural modifications evidenced by NMR. In vivo, these point mutations induced a complete loss of viral infectivity by interrupting critical step(s) of the retroviral life cycle. To account for these findings, a model of the complex between NCp7 and d (ACGCC) has been proposed from NMR data, showing the intercalation of Trp37 in the oligonucleotide. This model could also explain the role of NCp7 in the formation of viral particles and agrees with the modifications in morphology of the virions containing mutations in the NCp7 zinc fingers. Vpr is essentially constituted by two long helical domains at its N- and C-terminals and the side chains of Leu60 and Leu67 participate in a leucine-zipper mode of intramolecular interaction. The results obtained have been used to try to develop new antiviral agents inhibiting NCp7 functions and thus possibly devoid of the resistance effects found with inhibitors of HIV enzymes (reverse transcriptase and protease).

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center