Send to

Choose Destination
Biochemistry. 1998 Feb 3;37(5):1306-14.

Dislodgment and accelerated degradation of Ras.

Author information

Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.


Membrane anchorage of Ras oncoproteins, required for transforming activity, depends on their carboxy-terminal farnesylcysteine. We previously showed that S-trans,trans-farnesylthiosalicylic acid (FTS), a synthetic farnesylcysteine mimetic, inhibits growth of ErbB2- and Ras-transformed cells, but not of v-Raf-transformed cells, suggesting that FTS interferes specifically with Ras functions. Here we demonstrate that FTS dislodges Ras from membranes of H-Ras-transformed (EJ) cells, facilitating its degradation and decreasing total cellular Ras. The dislodged Ras that was transiently present in the cytosol was degraded relatively rapidly, causing a decrease of up to 80% in total cellular Ras. The half-life of Ras was 10 +/- 4 h in FTS-treated EJ cells and 27 +/- 4 h in controls. The dislodgment of membrane Ras and decrease in total cellular Ras were dose-dependent: 50% of the effects occurred at 10-15 microM, comparable to concentrations (7-10 microM) required for 50% growth inhibition in EJ cells. Higher concentrations of FTS (25-50 microM) were required to dislodge Ras from Rat-1 cell membranes expressing normal Ras, suggesting some selectivity of FTS toward oncogenic Ras. Membrane localization of the prenylated G beta gamma of heterotrimeric G proteins was not affected by FTS in EJ cells. An FTS-related compound, N-acetyl-S-farnesyl-L-cysteine, which does not inhibit EJ cell growth, did not affect Ras. FTS did not inhibit growth of Rat-1 cells transformed by N-myristylated H-Ras and did not reduce the total amount of this Ras isoform. The results suggest that FTS affects docking of Ras in the cell membrane in a rather specific manner, rendering the protein susceptible to proteolytic degradation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center