Format

Send to

Choose Destination
Biochim Biophys Acta. 1976 Jul 9;440(1):45-58.

Inhibition of mitochondrial electron transport by hydrophilic metal chelators. Determination of dehydrogenase topography.

Abstract

The topography of the inner mitochondrial membrane was investigated using inhibitors of electron transport on preparations of beef heart mitochondria and electron transport particles of opposite orientation. Reductions of juglone, ferricyanide, indophenol, coenzyme Q, duroquinone, and cytochrome c by NADH are inhibited to different extents on both sides of the membrane by the impermeant hydrophilic chelators bathophenanthroline sulfonate and orthophenanthroline. The extent of inhibition for each acceptor increased in the order given. At least two chelator-sensitive sites are present on each membrane face between the flavoprotein and coenzyme Q and a chelator-sensitive site is present on the matrix face between the sites of coenzyme Q and duroquinone interaction. Duroquinol oxidation in mitochondria only is stimulated by bathophenanthroline sulfonate. Juglone reduction is stimulated in electron transport particles (only) by p-hydroxymercuribenzenesulfonate, but after mercurial treatment, juglone reduction in both particles and mitochondria is more sensitive to bathophenanthroline sulfonate. Succinate dehydrogenase components are inhibited by hydrophilic orthophenanthroline or bathophenanthroline sulfonate in mitochondria only. Electron flow between the dehydrogenases of succinate and NADH occurs via a chelator-sensitive site located on the matrix face of the membrane. Inter-complex electron flow is prevented by rotenone or thenoyltrifluoroacetone. The lack of succinate-indophenol reductase inhibition by bathophenanthroline sulfonate in the presence of rotenone or thenoyltrifluoroacetone indicates that the rotenone-sensitive site may be located on the matrix face and demonstrates that electrons flow between the NADH and succinate dehydrogenases via a hydrophilic chelator and rotenone-thenoyltrifluoroacetone-sensitive site on the matrix face of the membrane. Inhibiton by hydrophilic chelators only in mitochondria indicates that succinate dehydrogenase as well as NADH dehydrogenase has a transmembranous orientation.

PMID:
947364
DOI:
10.1016/0005-2728(76)90112-2
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center