Format

Send to

Choose Destination
Dev Biol. 1998 Jan 15;193(2):169-81.

Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart.

Author information

1
Division of Pediatric Cardiology, University of California, San Francisco 94143, USA.

Abstract

Previous studies have shown that during avian heart development, epicardial and coronary vascular smooth muscle precursors are derived from the proepicardium, a derivative of the developing liver. This finding led to a model of coronary vascular development in which epicardial cells migrate over the postlooped heart, followed by migration of committed endothelial and smooth muscle precursors from the proepicardium through the subepicardial matrix where the coronary arteries develop. Here we show that epicardial cells undergo epithelial-mesenchymal transformation to become coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts. We began by establishing primary cultures of quail epicardial cells that retain morphologic and antigenic identity to epicardial cells in vivo. Quail epicardial monolayers stimulated with serum or vascular growth factors produced invasive mesenchyme in collagen gels. Chick epicardial cells labeled in ovo with DiI invaded the subepicardial extracellular matrix, demonstrating that mesenchymal transformation of epicardium occurs in vivo. To determine the fates of epicardially derived mesenchymal cells, quail epicardial cells labeled in vitro with LacZ were grafted into the pericardial space of E2 chicks. These cells attached to the heart, formed a chimeric epicardium, invaded the subepicardial matrix and myocardial wall, and became coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts, demonstrating the common epicardial origin of these cell types. A general model of coronary vascular development should now include epicardial-mesenchymal transformation and direct participation of mesenchyme derived from the epicardium in coronary morphogenesis.

PMID:
9473322
DOI:
10.1006/dbio.1997.8801
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center