Send to

Choose Destination
See comment in PubMed Commons below
Vet Parasitol. 1997 Nov;72(3-4):225-38; discussion 238-45.

Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research.

Author information

Biosystematics and National Parasite Collection Unit, US Department of Agriculture, Beltsville Agricultural Research Center, MD 20705-2350, USA.


The systematics of trichostrongyloid nematodes of ruminants provides a foundation for diagnostics and responds to the need to identify eggs in feces, free-living larvae from pastures or fecal cultures and larval or adult nematodes collected from hosts. These needs are associated with diagnostic problems or research projects. Difficulties in identifying all developmental stages of trichostrongyloid nematodes of domestic ruminants still severely limit the effective diagnosis and control of these parasites. Phylogenetic hypotheses as the basis for predictive classifications have been developed only for the subfamilies of the Trichostrongylidae. This report briefly describes recent progress in the development of improved tools for identification, phylogenetic analyses and predictive classifications. It also describes future research needed on the identification and classification of trichostrongyloid nematode parasites of domestic ruminants. Nematodes included are species of the super-family Trichostrongyloidea known to be important pathogens of domestic ruminants. The information summarized is presented by nematode developmental stage and by taxonomic groups. Eggs: While eggs of some trichostrongyloid nematode parasites of ruminants can be readily identified to their genus (Nematodirus), and some to species (e.g. Nematodirus battus), most of the important pathogens (including the Ostertagiinae and Haemonchinae) cannot be identified morphologically or morphometrically even to family level. However, DNA technology has been developed for determining not only the presence of specific pathogens in eggs from fecal samples, but also for estimating the percentage of the total eggs that each pathogen comprises. This new method will make possible a rapid determination of which individual animals in a herd should be treated. Larvae: The most commonly-used method for identifying infective larvae is time-consuming (several weeks), unreliable for estimating intensities of individual species as components of mixed populations and requires highly trained specialists. Available identification keys for larvae are not well illustrated and need to be augmented. Adults: Recent advances in the identification of adult trichostrongyloids and their systematics are organized by taxonomic group. Genera included are Ostertagia, Haemonchus, Cooperia, Trichostrongylus and Nematodirus. Recently, the first phylogenetic analysis of the Trichostrongylidae family established monophyly for the family. A similar analysis of the Molineidae is needed. Ostertagia: Several studies of polymorphism summarized the phenomenon and listed 19 polymorphic species in five genera. Two studies of DNA differences within and among polymorphic species of Ostertagiinae supported earlier hypotheses that the species pairs represent polymorphic species. A phylogenetic analysis of the Ostertagiinae and generic concepts are needed. Haemonchus: A key to three species of Haemonchus provides, for the first time, morphological characteristics for the microscopical identification to species of individual adult nematodes of either sex. The Food and Drug Administration is now requiring that results of drug trials include identification of Haemonchus to species. Cooperia: Studies using random amplified polymorphic DNA methods showed a high degree of variation within and among C. oncophora/C. surnabada, but supported a polymorphic relationship for the species pair. A phylogenetic analysis of the Cooperiinae is needed. Trichostrongylus: Restriction Fragment Length Polymorphisms (RFLPs) of genomic DNA of two strains of T. colubriformis indicated a high degree of intra- and inter-strain DNA polymorphism. However, other studies demonstrated expected species level differences between T. colubriformis and T. vitrinus using Random Amplified Polymorphic DNA (RAPD) methods. Sequences of the second Internal Transcribed Spacer Region (ITS-2) ribosomal repeat showed sequence differences of 1.3-7.6% among five

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center