Format

Send to

Choose Destination
See comment in PubMed Commons below
Virology. 1998 Feb 1;241(1):61-72.

Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution.

Author information

1
Institut für Mikrobiologie, Bundesanstalt für Milchforschung, Hermann-Weigmann-Strasse 1, Kiel, D-24103, Germany.

Abstract

A 7.6-kb DNA segment covering the putative lysogeny module of the pac-site-containing temperate Streptococcus thermophilus bacteriophage TP-J34 was sequenced. Sequence alignment with the lysogeny module from the cos-site-containing S. thermophilus bacteriophage phiSfi21 revealed areas of high sequence conservation (e.g., over the int gene), interspersed with regions of low or no sequence similarity (e.g., over the cro gene). Four of the six sharp transition zones from high to low sequence conservation were found within open reading frames coding for the CI repressor, the Anti-repressor, the Immunity protein, and a protein of unknown function. The transition points in the cI and ant genes appear to separate gene segments coding for distinct functional domains of these proteins. In addition, these two transition points were located at or near the deletion sites observed in spontaneous phage phiSfi21 deletion mutants, thus suggesting these transition points as recombinational hotspots. Furthermore, the sequence at the transition point in the cI gene resembles the attachment site of the phage, suggesting the involvement of the phage integrase in at least some of the exchange reactions. Contrary to the initial formulation of the modular theory of phage evolution the unit of the evolutionary exchange in streptococcal phages is not a group of functional genes, but can be as small as a single gene. Exchange reactions can also occur within genes, possibly between gene segments encoding distinct protein domains.

PMID:
9454717
DOI:
10.1006/viro.1997.8960
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center