Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1998 Mar;125(5):879-87.

Auxin-induced developmental patterns in Brassica juncea embryos.

Author information

  • 1Institut fur Biologie II, Zellbiologie, Universitat Freiburg, Freiburg, Germany.

Abstract

To investigate the mechanism of auxin action during pattern formation in dicot embryos, we tested the effects of the natural auxin indole-3-acetic acid (IAA), the auxin transport inhibitor N-(1-naphthyl)thalamic acid (NPA) and the antiauxin p-chlorophenoxyisobutyric acid (PCIB). In vitro treatments of isolated zygotic Brassica juncea embryos with these substances led to a wide range of morphogenetic alterations. Treatment of globular embryos with exogenous auxin (10-40 microM) either completely inhibited morphogenesis, resulting in ball-shaped embryos, or caused the development of egg- and cucumber-shaped embryos, which only consisted of a shortened hypocotyl without any apical structures. Axis duplication was observed sometimes after inhibition of auxin transport in globular embryos, and led to the development of twin embryos. During the transition from globular to heart stage, changes in auxin distribution or activity frequently caused the development of either split-collar or collar-cotyledons. Antiauxin inhibited cotyledon growth, leading to embryos with single or no cotyledons, or inhibited the development of the hypocotyl and the radicle. Inhibition of auxin transport in transition embryos sometimes led to axis broadening, which resulted in the development of two radicles. The described changes in embryo shapes represent arrests in different auxin-regulated developmental steps and phenocopy some Arabidopsis morphogenetic mutants.

PMID:
9449670
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center