Format

Send to

Choose Destination
J Air Waste Manag Assoc. 1997 Dec;47(12):1238-49.

Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies.

Author information

1
US Environmental Protection Agency, Research Triangle Park, North Carolina, USA. wilson.william@epamail.epa.gov

Abstract

Fine particles and coarse particles are defined in terms of the modal structure of particle size distributions typically observed in the atmosphere. Differences between the various modes are discussed. The fractions of fine and coarse particles collected in specific size ranges, such as total suspended particulate matter (TSP), PM10, PM2.5, and PM(10-2.5), are shown. Correlations of 24-h concentrations of PM2.5, PM10, and PM(10-2.5) at the same site show that, in Philadelphia and St. Louis, PM2.5 is highly correlated with PM10 but poorly correlated with PM (10-2.5). Among sites distributed across these urban areas, the site-to-site correlations of 24-h PM concentrations are high for PM2.5 but not for PM(10-2.5). This indicates that a PM measurement at a central monitor can serve as a better indicator of the community-wide concentration of fine particles than of coarse particles. The fraction of ambient outdoor particles found suspended indoors is greater for fine particles than for coarse particles because of the difference in indoor lifetimes. Consideration of these relationships leads to the hypothesis that the statistical associations found between daily PM indicators and health outcomes may be the result of variations in the fine particle component of the atmospheric aerosol, not of variations in the coarse component. As a result, epidemiologic studies using PM10 or TSP may provide more useful information on the acute health effects of fine particles than coarse particles. Fine and coarse particles are separate classes of pollutants and should be measured separately in research and epidemiologic studies. PM2.5 and PM(10-2.5) are indicators or surrogates, but not measurements, of fine and coarse particles.

PMID:
9448515
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center