Format

Send to

Choose Destination
J Neurooncol. 1997 Dec;35(3):303-14.

The autocrine loop of TGF-alpha/EGFR and brain tumors.

Author information

1
Department of Neuro-Oncology, University of Texas, M.D Anderson Cancer Center, Houston 77030, USA.

Abstract

Malignant human gliomas are the most common forms of primary tumors in the central nerve system. Due to their location and invasive nature, treatment so far has been mainly palliative. Thus, understanding the molecular detail of tumor transformation and progression is crucial for developing effective therapeutic strategy for this fetal tumor. Among the genetic alternations found in these tumors, p53 inactivation and PDGF/PDGFR activation represent the early events, and the loss of chromosome 10 and gene amplification and rearrangement of EGFR represent the late events. Studies with both glioma cell lines and primary tumor tissues have strongly suggested that TGF-alpha and EGFR function as an important autocrine loop in supporting proliferation of human glioma, especially in high grade glioma, since elevated TGF-alpha expression is also found in these high grade tumors. Furthermore, down regulation of the expression of TGF-alpha by antisense constructs has been shown to inhibit several types of human tumor cell growth including glioma. Other means of therapeutic approaches using this autocrine loop as a target also include the use of monoclonal antibodies and their cytotoxic conjugated. Considerable understanding of the EGFR-mediated signal transduction pathways has become available recently, which including GRB2/mSOS1 mediated MAP kinase activation; JAK/STATs pathway; PLC-gamma pathway. However, much work still needs to be done before a specific component of these pathways can be applied for effective control of tumor growth in the clinic.

PMID:
9440027
DOI:
10.1023/a:1005824802617
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center