Format

Send to

Choose Destination
Calcif Tissue Int. 1998 Feb;62(2):172-6.

Bone geometry and strength measurements in aging mice with the oim mutation.

Author information

1
Bone Metabolism Research Laboratory, Division of Geriatric Medicine and Gerontology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA.

Abstract

Mice with the naturally occurring oim mutation allows investigation of bone pathobiology in the setting of one mutation: a G deletion in the murine Cola-2 gene (exon 52) encoding the proalpha2(I) C-propeptide. As a result, normal sized mRNA is transcribed, but no secreted protein has been identified in oim/oim fibroblasts or osteoblasts. Here we report longitudinal changes in body mass, bone geometry, and bone structural properties of femurs tested in torsion from wild type (+/+) mice and mice homozygous (oim/oim) and heterozygous (+/oim) for the oim mutation. Femurs from mice 3 months, 6 months, 12 months, and >18 months of age were dissected and X-ray films were taken in anterioposterior and mediolateral views to estimate the geometric properties. The metaphyseal ends of femurs were potted in polymethylemethacrylate and mounted on a torsional test fixture designed to convert axial tensile deformation to a torsional load using an INSTRON model 4204 materials tester. Compared with +/+ samples, peak torque at failure was reduced in oim/oim mice. Also, the geometric distribution of midshaft bone for oim/oim mice in terms of cortical area and polar moment was significantly reduced. However, the impact of the mutation on bone distribution was relatively minor for +/oim mice. Consistent with a type III classification in human OI patients, the presence of two nonfunctional alleles in homozygous oim mice significantly reduced body mass compared with age-matched wild type mice. However, no statistical difference in body mass was detected between +/oim and +/+ mice. The absence of a gross phenotypic difference between +/oim and +/+ mice demonstrates a milder phenotype in +/oim mice.

PMID:
9437052
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center