Send to

Choose Destination
Am J Physiol. 1997 Dec;273(6 Pt 2):H2811-6.

Spectral characteristics of ventricular response to atrial fibrillation.

Author information

Third Department of Internal Medicine, Nagoya City University Medical School, Japan.


To investigate the spectral characteristics of the fluctuation in ventricular response during atrial fibrillation (AF), R-R interval time series obtained from ambulatory electrocardiograms were analyzed in 45 patients with chronic AF and in 30 age-matched healthy subjects with normal sinus rhythm (SR). Although the 24-h R-R interval spectrum during SR showed a 1/f noise-like downsloping linear pattern when plotted as log power against log frequency, the spectrum during AF showed an angular shape with a breakpoint at a frequency of 0.005 +/- 0.002 Hz, by which the spectrum was separated into long-term and short-term components with different spectral characteristics. The short-term component showed a white noise-like flat spectrum with a spectral exponent (absolute value of the regression slope) of 0.05 +/- 0.08 and an intercept at 10(-2) Hz of 4.9 +/- 0.3 log(ms2/Hz). The long-term component had a 1/f noise-like spectrum with a spectral exponent of 1.26 +/- 0.40 and an intercept at 10(-4) Hz of 7.0 +/- 0.3 log(ms2/Hz), which did not differ significantly from those for the spectrum during SR in the same frequency range [spectral exponent, 1.36 +/- 0.06; intercept at 10(-4) Hz, 7.1 +/- 0.3 log(ms2/Hz)]. The R-R intervals during AF may be a sequence of uncorrelated values over the short term (within several minutes). Over the longer term, however, the R-R interval fluctuation shows the long-range negative correlation suggestive of underlying regulatory processes, and spectral characteristics indistinguishable from those for SR suggest that the long-term fluctuations during AF and SR may originate from similar dynamics of the cardiovascular regulatory systems.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center