Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):582-7.

Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor.

Author information

Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA.


Nuclear import of proteins containing a nuclear localization signal (NLS) is dependent on the presence of a cytoplasmic NLS receptor, the GTPase Ran, and p10/ NTF2. The NLS receptor is a heterodimeric proteins consisting of subunits of approximately 60 and 97 kDa, which have been termed importin alpha/beta, karyopherin alpha/beta, or PTAC 58/ 97. Members of the 60-kDa/importin alpha subunit family directly bind to the NLS motif and have been shown to function as adaptors that tether NLS-containing proteins to the p97/ importin beta subunit and to the downstream transport machinery. Herein we report the identification and characterization of hSRP1 gamma, a human importin alpha homologue. The hSRP1 gamma protein is around 45% identical to the previously identified human importin alpha homologues hSRP1 alpha/Rch1 and NPI/ hSRP1. hSRP1 gamma can form a complex with importin beta and is able to mediate import of a BSA-NLS substrate in an in vitro nuclear import system. Interestingly, hSRP1 gamma shows a very selective expression pattern and is most abundantly expressed in skeletal muscle, representing more than 1% of the total protein in this tissue. A potential role for hSRP1 gamma in tissue-specific transport events is discussed.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center