Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Jan 16;273(3):1324-8.

Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit.

Author information

Division of Cardiology, UCLA School of Medicine 90095, USA.


Muscarinic potassium channels are heterotetramers of Kir3.1 and other Kir3 channel subunits and play major roles in regulating membrane excitability in cardiac atrial, neuronal, and neuroendocrine tissues. We report here that rabbit atrial muscarinic potassium channels are rapidly and reversibly inhibited by membrane stretch, possibly serving as a mechanoelectrical feedback pathway. To probe the molecular basis for this phenomenon, we heterologously expressed heteromeric Kir3.1/Kir3.4 channels in Xenopus oocytes and found that they possess similar mechanosensitivity in response to hypo-osmolar stress. This could be attributed in part, if not exclusively, to the Kir3.4 subunit, which reproduced the mechanosensitivity of the heteromeric channel when expressed as a homomeric channel in oocytes. Kir3.4 is the first stretch-inactivated potassium channel to be identified molecularly. Physiologically, this feature may be important in atrial volume-sensing and other responses to stretch.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center